Monte Carlo sampling of near-native structures of proteins with applications.
نویسندگان
چکیده
Since a protein's dynamic fluctuation inside cells affects the protein's biological properties, we present a novel method to study the ensemble of near-native structures (NNS) of proteins, namely, the conformations that are very similar to the experimentally determined native structure. We show that this method enables us to (i) quantify the difficulty of predicting a protein's structure, (ii) choose appropriate simplified representations of protein structures, and (iii) assess the effectiveness of knowledge-based potential functions. We found that well-designed simple representations of protein structures are likely as accurate as those more complex ones for certain potential functions. We also found that the widely used contact potential functions stabilize NNS poorly, whereas potential functions incorporating local structure information significantly increase the stability of NNS.
منابع مشابه
Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided Sequential Chain-Growth Monte Carlo Method
Loops in proteins are flexible regions connecting regular secondary structures. They are often involved in protein functions through interacting with other molecules. The irregularity and flexibility of loops make their structures difficult to determine experimentally and challenging to model computationally. Conformation sampling and energy evaluation are the two key components in loop modelin...
متن کاملAn Evolutionary Search Algorithm to Guide Stochastic Search for Near-Native Protein Conformations with Multiobjective Analysis
Predicting native conformations of a protein sequence is known as de novo structure prediction and is a central challenge in computational biology. Most computational protocols employ Monte Carlo sampling. Evolutionary search algorithms have also been proposed to enhance sampling of near-native conformations. These approaches bias stochastic search by an energy function, even though current ene...
متن کاملApplication of Enhanced Sampling Monte Carlo Methods for High-Resolution Protein-Protein Docking in Rosetta
The high-resolution refinement of docked protein-protein complexes can provide valuable structural and mechanistic insight into protein complex formation complementing experiment. Monte Carlo (MC) based approaches are frequently applied to sample putative interaction geometries of proteins including also possible conformational changes of the binding partners. In order to explore efficiency imp...
متن کاملThe elastic net algorithm and protein structure prediction
Predicting protein structures from their amino acid sequences is a problem of global optimization. Global optima (native structures) are often sought using stochastic sampling methods such as Monte Carlo or molecular dynamics, but these methods are slow. In contrast, there are fast deterministic methods that find near-optimal solutions of well-known global optimization problems such as the trav...
متن کاملDetecting near-native docking decoys by Monte Carlo stability analysis.
Since protein complex crystallization is expensive and time-consuming, computational docking tools provide a valuable method to investigate protein interactions. While the sampling of possible docked conformers of two proteins can be performed efficiently by Fast Fourier Transform (FFT) methods, the selection of near-native decoys from the pool of thousands of possible decoys is still far from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 66 1 شماره
صفحات -
تاریخ انتشار 2007